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ABSTRACT

A frequency domain method of synthesizing the minimal sensitivity
sampled-data control systems is developed. A minimal sensitivity system
is the one having a shortest sensitivity polynomial. The method is
simple, easy to apply, and is not restricted to the order of the plant.
Several discussions are made. Three examples are given to demonstrate

the effectiveness of the method,
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CHAPTER I
INTRODUCTION

One important feature of a linear sampled-data control system,
which is not possessed by its continuous-data counterpart, is that it
can be designed to achieve an error-free finite settling time in response
to a certain class of inputs (1-5)*. However, engineers are reluctant
to enjoy this feature because of the general feeling that sampled-data
systems of this type suffer from infinite pole-sensitivity with respect
to system parameter variationms.

The error-free finite settling time property will be called
"deadbeat" property in this paper, and a system possessing this property
will be called a "deadbeat system." (Figure 1).

The word infinite pole-sensitivity is rather misleading, since it
is associated with a particular definition of pole-sensitivity which
may not be suitable for certain types of systems. It is well known that
a deadbeat sampled-data system has a multiple pole at the origin of the

z-plane. The use of the pole-sensitivity defined by

s, ds .
SXJ = a‘l ’ (1L

where Sj is the closed-loop pole and x is a changing parameter, leads to

infinite pole-sensitivity. The real effect on the system pole sj due to

*
Numbers in parentheses represent similarly numbered entries in
the "List of References.”
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Figure 1. Deadbeat response.




the parameter change is not only seldom infinite but may not even be
large. It has been shown (6) that under this condition a suitable pole-

sensitivity would be

S . (as )™
53 - i @

where m is the multiplicity of the multiple pole sj. This definition of
pole-sensitivity results in a finite sensitivity value and has been
demonstrated reliable.

Considerable amount of attention has been given to the sensitivity
problems in control systems in recent years. Both frequency domain and
time domain approaches have been attempted.

However, very little attention has been given to the design of
low sensitivity deadbeat sampled-data control systems. Although a dead-
beat system loses its deadbeat property for any change of system parameter,
systems with lower sensitivity will have a response closer to deadbeat.
This paper presents a frequency domain (z-transform) method for designing
minimal sensitivity deadbeat sampled-data control systems.

Instead of using the pole-sensitivity defined by Equation (2), a
different concept of sensitivity is used for our problem (9). Let C(z)
be the output of a deadbeat sampled-data system responding to a certain
class of input, R(z). A differential change of a system parameter
causes a differential change in output response, which is denoted by
dC(z). Note that dC(z) is a polynomial in z-l, which will be called the
""sensitivity polynomial."” A "minimal sensitivity” system is defined as

a system having the shortest semsitivity polynomial.
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From the topological point of view, the input-output relation and
the sensitivity of a feedback system can be controlled simultaneously
by using a two-degree-of-freedom structure having a cascade controller
and a feedback controller (7,8). In the following, a method of designing
the minimal sensitivity sampled-data control system will be developed.
The method of design is simple, and several examples will be given for

illustration.



CHAPTER II
DEVELOPMENT OF THE METHOD

Consider a sampled-data control system having two digital com-
pensators, Dl(z) and Dz(z), and a plant, G(z), as shown in Figure 2.
The closed-loop transfer function of the system is

c(z) Dl(z)G(z)

H(z) R(z) ~ 1+ D, (2)D,(2)G(z) ’

(3)

It is easily shown that the differential change of the output response

is related to the differential change of the plant by

%g—:; = [1 - p,me) ] d—g-é-% , (4)
or
4c(z) = RA@ [1 - D2z | 42 (5)
This is the "sensitivity polynomial."
The plant can be expressed in the general form
m,
K z's Ta-z22"h ’
G(z) = d L— (6)
ﬁr(l - p.z-l)-l

where mj and ni are the orders of the zeros zj and of the poles pi
respectively, K is the gain, and z'S is the plant transport lag. It can
be shown that the variations in the plant with respect to its gain, pole

and zero is



Figure 2. Two-controller sampled-data control system.



-1 -1
n.z dp. m.z dz
ac(z) _ QCz) _ dK | Z i© Pt - Z I I (7

G(z) P(2) K - 3 . p,z-l 1 - z,z-l
i i j

where Q(z) and P(2z) are polynomialsin z'l. The reference input takes
the general form

R(z) = —A2) (8
1 "
(1-27)

with A(z) being a finite polynomial and having no zero at z = 1.

Referring to Equation (5), R(z) and G(z) are in general given,
and H(z) is completely determined by the required deadbeat property of
the system and its physical realizability conditions (1,2). This leaves
only D2(z) which can be adjusted for the shortest dC(z).

Let U(z) and V(z) be the numerator and the denominator polynomial

of Dz(z), respectively, i.e.

D2(z) = 702 . (9)

The physical realizability requires that V(z) must contain a constant
term. The closed-loop transfer function of a deadbeat system has the

form

Hz) = z°° F(z) (10)

where z'S is the plant transport lag and F(z) is a finite polynomial with
a constant term. Substituting Equations (8), (9) and (10) into Equation

(5), gives

ac(z) = Alz)

U(2)z"F(z) ] 0(2) (an

Lo H(Z)[ 1~ v(z) P(z) °

(1 -2
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Since there may be cancellations among A(z), H(z), P(2) and (1 - z-l)m,
let

N(z) _ A(2)H(z)

M(z) m (12

(1-2"H P(z)
where N(z) and M(z) are finite polynomialsin z-'1 and are relatively

prime. Then Equation (11) becomes

-5
_ N(2) U(z)z F(z)
dc(z) = e) [1 a7 = e ] Q(2) . (13)

Examining Equation (13) reveals that dC(z) is made the shortest
when
V(z) = F(2) (14)

and when U(z) is so chosen such that

1 - Wz)z=2
S(2) = 222 (15)

is the shorted polynomial in z—l. Equations (14) and (15) may be called

the "minimal sensitivity condition.”
Once V(z) and U(z) are found D2(z) is determined. Then Dl(z) is
given by

- H(z)
D,(2) =&y [T - D,(2)u(2)] . (16)




CHAPTER I1II

DESIGN PROCEDURE

The theory of designing the closed-loop transfer function, H(z),
for a deadbeat system is available in literature (1,2). Here, a complete
design procedure, for the minimal sensitivity deadbeat system, is out-
lined.

Given the plant and the input, Equations (6) and (8), the design
procedure is as follows:

Step I. Let

m,
- -1, J - -
H(z)=z$7.T(1-Z.zl) (a +azl+...+a zm+1) aan
h hj o 1 m-1
and solve for a , a,, ..., a from the condition
o 1 m-1

H(1) =1 3\

T
H(1) =0

. > (18)
H(m--l)(l) =0 )
where the derivatives of H(z) are taken with respect to z'l.

Step 1II. Determine dG(z) as given by Equation (7) and

p II. Tz *° 8 Y

determine M(z) using Equation (12).
Step III. Determine V(z) and U(z) from the minimal sen-

sitivity condition, Equations (14) and (15).



Step IV. The two controllers are given by

_u(2)
D,(2) = 5
and
_ H(z)
DD = G T - (DD T

10

(19)



CHAPTER 1V
REMARKS

Although the differential sensitivitx polynomial, dC(z), can be
made a finite polynomial in z_1 by the above design technique, the out-
put deviation in a real system is in general an infinite polynomial.

This is due to the fact that for an incremental change of the plant
parameters, the change of the output as given by Equation (5), is only

an approximation. However, if the plant variation is not severe, the
actual polynomial of the output deviation will approximate the sensitivity
polynomial.

The system input is not restricted to the form shown in Equation
(8). For example, if the system input is in the form

R(z) = A(z) 5 , (20)
Qa - az'l) Q1 - bz‘l)

then the system transfer function becomes

m

i
H(z) = 2-573'(1 - ziz-l) (a+azlas .., aa+p-1z-a_p+1

o 1 ) I

(21

The coefficients, ag, a;, ... a 1» can be obtained by a procedure,

q+g-

similar to Equation (18), as follows:

H(a) =1 s

¢
i fa) =0 . (22a)
1Dy =0

11



Hb) =1
) =0 ,
H(p'l)(b) =0 .

However, under this condition, the output is in general not

One word should be said about the controllability of
The plant is controllable if it is free of poles with equal
whose imaginary parts are separated by an integral multiple

sampling frequency.

12

(22b)

ripple-free.
the system,
real parts

of the



CHAPTER V
EXAMPLES

Three examples are given to demonstrate the effectiveness of the

proposed method.
I. EXAMPLE 1

Given the plant

1 1

0.3679z (1 + 0.71832" ")
1 H

G(z) = T
(1 - 277)(1 - 0.36892" ")

design the minimal sensitivity deadbeat system for a step input, where the
plant gain is the varying parameters.

Step I. Take
-1 -1
H(z) =z (1 + 0.71832 )ao

letting H(1) = 1,gives a = 0.5820. Hence,

H(z) = 0.582z" (1 + 0.7183z" 1) ,
E(z) =1 + 0.41827" , and
dé(z) _ dK ‘

Gz - K a constant.

Step II. Using Equation (12)

N(z) _ 0.58252" (1 + 0.71832"1)
M(z) (1 - z-l)
where

M(z) =1 - z_l.

13
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Step III. Let
-1
Vv(z) = 0.582(1 + 0.7183z ),
By taking U(z) =1,

1 - U(z)z_1 =

l - z"1

S(z) =

the shortest polynomial.
Step IV. Using Equation (19),

1,7183
1 + 0.7183z"

D,(z) = 1

and
D, (2) = 1.582(1 - 0.3679z"1).

It would be interesting to compare the performance of the two-
controller system to that of one-controller system, Figure 3. The design
of the one-controller system is known (1). Under the nominal condition,
both systems have identical input-output response,

Consider a gain change of 50 percent, the varied plant becomes

=1 -1
GV(Z) - 0.55182 (1 + 0.7183z ) .

(1 - z‘l)(1 - 0.3679z‘1)

The subscript "v" denotes the varied function. Table I contains the com-
parison of the two systems under varied conditions. For the ease of com~
parison, Figure 4 shows the system error for both systems under nominal
conditions and varied conditions. The merit of two-controller system is

evident.
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Figure 3. One-controller sampled-data control system.



TABLE I

COMPARISON FOR EXAMPLE 1

Two-Controller System

Dl(z) = 1.582(1 - o.3679z‘1)
Dz(z) 1.7183 :
1 + 0.71832

One-Controller System

1.582(1 - 0.3679z" >

D(z) = T
1 + 0.4182

Gain Variation by 50%:

0.55182"2(1 + 0.71832" 1)
Gv(z) T m
(1 -« 27)(1 - 0.36792" )
Two-Controller System
-1 -1
0.873z" (1 + 0.7183z ")
H(z2) = T
v 1+0.52
-1 =2 -3
Ev(z) = 1+ 0.1272 ~ - 0.064z ° + 0.0307z
~0.154z"% + 0.00772"° - 0.003822"% -
One-Controller System
-1 -1
0.873z" (1 + 0.7183z )
H(z) = ) =
v 1 +0.291z"" + 0.209z
-1 -2 -3
Ev(z) = 1 + 0,12732 " + 0.246%2 + 0.0462

5 6

+o.038z‘4 - 0.02072"° =~ 0.0582" " <=

et —————
P e e e

16
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Figure 4. System errors for Example 1.
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IT. EXAMPLE 2

The problem is the same as Example 1, except now the plant pole

at z = 1 is the varying parameter. Here

a(z) _  0.527%

G(z) 1 - z-1

The design result of the two-controller system and the comparison to the
one-controller system is tabulated in Table II. Figure 5 shows the com-
parison of the system errors. Note that G(z), H(z) and E(z), the nominal

condition functions, are the same as in Example 1.

III. EXAMPLE 3

In a practical system, the change of a single plant parameter may
cause a simultaneous change of gain, poles and zeros of the plant. This
example will illustrate this case.

Consider a separately excited dc motor driving a load. The
transfer function between the applied armature voltage V and the motor

shaft position @ is

K.
1

R
° . ? a
' s|s + 1 B + KTKe

J R
a
where
2 . .

J = 443.0 slug-ft , armature-load inertia ,
B = 160 1b-ft/rad-sec, friction coefficient |,
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TABLE II

COMPARISON FOR EXAMPLE 2

Two-Controller System

-1
D1(Z) 1.582(1 - 0.56792 )
(1 -277)
3.4364(1 - 0O 5z“1)
Dy(z) = = 7
1 + 0.71832
One-Controller System
-1
D(z) = 1.582(1 =~ o.3ez9z )
1 + 0.4182

Pole Variation by 50%:

1 1

0.368z (1 + 0.7183z )
1

G (2) T
v (1 - 1.52"9(1 - 0.3679z™ ")

Two-Controller System
1

-1 -
H (2) 0.582z (1 :10.71832 2)
v 1-0.52"" +0.52"
Ev(z) =1 + o.alsz"1 - 0.291z"2 - 0.35457.‘3 - 0.03182"%
+ 0.16142-5 + 0.0966z‘6 - 0.03282" - 0.0647z'8
- _1/\ _11
- 0.0162z~° + 0.02402" 10 - 0.022" %} -
One-Controller System
0.582z"1(1 + 0.71832"1)
Hv(z) = -1 -2
1 - 0.5z - 0.209z
E(2) =1 + 0.4182"1 - 0.2910272 - 0.76712"° - 1.1534z"%
- 1.4460z~° - 1.67312~% - 1.8502z" - 1.9854z~ %
- 2.08962~0 - 2.1702~ 10 - 2.2322711 _ 2.27982712 ___



nominal condition

two-controller system

20
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Figure 5, System errors for Example 2.
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28.2 1b-ft/amp, torque constant |,

e

~
n

4.0 volt/rad-sec, emf constant ,

and

R
a

0.1 ohm, armature resistance .

The motor is preceded by a zero-order hold. Design a deadbeat sampled-
data control system with minimal sensitivity in response to step inputs.
The sampling period is one second and the varying parameter is the
armature circuit resistance, Ra. For example, a 20 percent increase of
Ra causes a 18.2 percent decrease in gain, a 2.8 percent decrease in
zero and a 10.6 percent decrease in a pole.

Under the nominal condition the following Equations are obtained:

o.1o9zz'1(1 + 0.2639z‘1)
G(z) = =3 ) ,
(1 -z (1 - 0.0104z )
-1 -1
H(z) = 0.7912z (1 + 0,2639z ) ,
and
-1
E(z) = 1 + 0.2088z .

For two-controller system,

DI(Z) 7.2454
and

1,2770(1 - 0.0103z‘1)
1 + 0.2639z'1

D2(2)
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For one~controller system,

7.2454(1 - 0.0104z‘1)
D(Z) = -1 .
(1 + 0.2088z )

The comparison of the two-controller system to the one-controller
system is tabulated in Table III. Figure 6 shows the comparison of

system errors.



TABLE IIX

COMPARISON FOR EXAMPLE 3

20% Increase in Ra

G (z)
v

0.08934z‘1(1 +»0.2567z-1)

(1 - z-l)(l - o.oo93z°1)

Two-Controller System

1 (2)
v

Ev(z) =1 + 0.3530z"

0.6470z'1(1 + 0.25672'1)(1 + 0.2639z'1)

1 + 0.0808z"} - 0.05352"2 + 0.00042""

1 3

+ 0.0685z2~2 + 0.0130z"

5

4, 0.00052" " ~c-

+ 0.0025z"

One-Controller System

H (2)
v

Ev(z) =1 + 0,3530z"

0.6470z‘1(1 + 0.0104z-1)(1‘+ 0.2567z'1)

1 - 0.1535" " - 0.04202"2 + 0.00022~>

1 3

+ 0.0943z‘2 + 0.0290z

+0.00842"% + 0.00252"° —--

23
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Figure 6.

System errors for Example 3.



CHAPTER VI

CONCLUSION

A frequency domain method has been developed for designing the
minimal sensitivity deadbeat sampled-data control systems where plant
variations are encountered. The systems are designed to have the shortest
sensitivity polynomials. The procedure is simple and systematiec,

Several numerical examples have been given to demonstrate the effective-
ness of the method. In general, if the plant variation is not severe,
the proposed method gives a two-controller system which is less sensitive
than the one-controller system.

It should be mentioned that for most sampled-data control systems,
a deadbeat response is not necessary. Furthermore, in general, the
plant dynamics are not precisely known, thus a practical deadbeat system
is seldom possible. However, the merits of the deadbeat system design
are: (1) it results in a general system with fast settling, and (2) the

method is simple.

25
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